CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC) NORTHERN ZONE JOINT EXAMINATIONS SYNDICATE (NZ-JES)

FORM FOUR PRE - NATIONAL EXAMINATION 2025

032/2B

CHEMISTRY 2B MARKING SCHEME

Question 1. (a) 04marks

B. Reading

Pipette used = 25cm^3

Experiment	Pilot	1	2	3
Final volume	12.70	25.30	37.70	12.50
(cm^3)				
Initial volume	00.0	12.70	25.30	00.0
(cm^3)				
Volume used	12.70	12.60	12.40	12.50
(cm^3)				

Average volume =
$$\underline{V1 + V2 + V3}$$

3

Average volume = $12.6 \text{cm}^3 + 12.4 \text{cm}^3 + 12.5 \text{cm}^3$

3

Average volume is 12.5cm³ 02marks

- (i) Therefore, average volume of an acid is 12.5cm³
- (ii) 12.5Cm³ of solution S required of 25cm³ of solution R for complete reaction. 1mark
- (b) (i) $H_2X(aq) + 2NaOH(aq) \rightarrow Na_2X(aq) + 2H_2O(aq)$ 1.5marks
 - (ii) $2H^{+}(aq) + 20H^{-}(aq) \rightarrow 2H_{2}0$ (l) 1.5 marks

(c) Molarity of S

Data given

Concentrated molarity (Mc) = 2M

Concentrated volume (Vc) = 100cm^3 01/2 mark

Diluted volume (Vd) = 2000cm^3

Diluted molarity (Md) = ?

Solution

From McVc = MdVd 01/2 mark

 $Md = \underline{McVc}$

Vd

 $Md = 2M \times 100cm^3$

2000cm³ 01mark

Therefore, Md is 0.1M 01mark

1. (c) Molarity of R:

Data given

Molarity of an acid(Ma) = 0.1M

Volume of an acid (Va) = 12.5 cm3

Number of moles of an acid (na) = 1 $\frac{01}{2}$ mark

Volume of a base (Vb) = 25 cm3

Number of moles of a base (nb) = 2

Molarity of a base (Mb) = ?

Solution:

From

MaVa = na

MbVb nb 01/2 mark

Mb = MaVanb

Vbna

 $Mb = 0.1M \times 12.5 \text{cm}^3 \times 2$ 01mark

 $25cm^{3} \times 1$

Therefore, molarity of base is 0.1 M. 01mark

(c) (ii) Data given Molarity of a base (Mb) = 0.1MMolar mass of a base = 40g/mole01/2 mark Concentration of a base =? Solution From Molarity = $\underline{\text{Conc in g/dm}^3}$ 01/2 mark Molar mass Concentration = Molarity x molar mass Concentration = $0.1 \text{M x } 40 \text{g/dm}^3$ 01mark Therefore, concentration of a base in g/dm³ is 4g/dm³ 01mark (d) (i) Data given Molarity of an acid (Ma) = 0.1MMolar mass of an acid =? 01/2 mark Solution Molarity = $\frac{\text{concentration}}{01/2 \text{ mark}}$ Molar mass Molar mass = ConcentrationMolarity Molar mass = 9g/dm30.1 M Therefore, Molar mass of S is 90g/mole 01mark (d) (ii) RAM of X $1 \times 2 + X = 90$

02marks

X = 90 - 2

Therefore, RAM of X is 88

(e) From

 H_2X

Number of hydrogen atoms (H=2, C= 2 and O = 4)

$$2 \times 1 + 2 \times 12 + 16 \times 4 = 90$$

Then X is Oxalate ion, Structure H₂C₂O₄, IUPAC name is Ehan-1,2-dioic acid (Oxalic Acid).

02marks

(f) Data given:

Molarity of an acid = 0.1M

Volume of an acid = 12.5cm^3

Number of moles =?

01/2 mark

Solution.

Molarity of an acid = $\underline{\text{number of mole}}$

Volume

Convert cm³ to dm³

 $1 dm^3 = 1000 cm^3$

 $x = 12.5 \text{cm}^3$

 $x = 1.25 \times 10^{-2} dm^3$ then,

01/2 mark

Number of mole of an acid = Molarity of acid x volume of an acid

Number of mole of an acid = $0.1 \text{ mol/dm}^3 \text{ x } 1.25 \text{ x} 10^{-2} \text{dm}^{-3}$

Therefore, Number of mole of an acid is 1.25x 10⁻³ 01/2 mark

1. (f) Data given:

Molarity of base = 0.1M

01/2 mark

Volume of bas = 25cm^3

Number of moles = ?

Solution.

Molarity of base = $\underline{\text{number of mole}}$

Volume

Convert cm³ to dm³ 01/2 mark

 $1 dm^3 = 1000 cm^3$

 $x = 25 cm^3$

 $x = 2.5 \times 10^{-2} dm^3 then,$

Number of mole of a base = Molarity of acid x volume of a base

Number of mole of a base = $0.1 \text{ mol/dm}^3 \text{ x } 2.5 \text{x} 10^{-2} \text{dm}^{-3}$

Therefore, Number of mole of a base is 2.5x 10⁻³ 01/2 mark

(g) P.O.P indicator was suitable for this experiment because weak acid reacted with strong base. 01mark

Question 2.

S/N	Experiment	Observations	Inference
(a)	Appearance of sample T (i) Color	White	NH ₄ + , Na ⁺ , Ca ²⁺ , Zn ²⁺ , Pb ²⁺ may be present
	(ii) Texture	Powder form	CO ₃ ²⁻ , HCO ₃ may be present.
	(iii) Odour	Choking smell	NH ₄ ⁺ may be present.
	(iv) Deliquescence	Absorbs water from the atmosphere to form a solution.	NO ₃ -, Cl- , SO4 ²⁻ may be present.
(b)	A little sample T was heated in a dry test tube.	White sublimate and a colourless gas evolves, which turns moist litmus paper from red to blue.	NH ₄ ⁺ may be present
(c)	A full spatula of sample T was put in a dry test tube, followed by addition of dil HCl, and evolution of a gas was tested with blue litmus paper.	Effervescence of a colourless gas evolves, which turns lime water milky and moist litmus paper from blue to red.	CO ₃ ²⁻ , HCO ₃ ⁻ may be present
(d)	A full spatula of sample T was put in a dry test tube, followed by addition of Conc Sulphuric acid, and evolution of a gas was	Effervescence of a colourless gas evolves. The gas turns lime water milky and moist litmus paper from blue to red.	CO ₃ ²⁻ , HCO ₃ ⁻ may be present

	tested with blue litmus paper.		
(e)	A little sample T was added in a test tube followed by addition of distilled water and solution was divided in to the three portions.	Soluble forming a colourless solution.	CO ₃ ²⁻ , HCO ₃ ⁻ of Na ⁺ , NH ₄ ⁺ may be present.
	(i). To the first portion ammonia solution was added in drop wise till in excess.	No precipitate was formed	NH ₄ ⁺ may be present.
	(ii) To the second portion sodium hydroxide solution was added in drop wise till in excess.	No precipitate was formed; on warming, a colourless gas with a choking smell which turns moist litmus paper from red to blue evolved	NH ₄ ⁺ may be present.
	(iii). To the third portion add barium chloride (BaCl ₂), solution was added then followed by dilute HCl.	White precipitate soluble in dilute HCl is formed.	CO ₃ ²⁻ confirmed.
(f)	A spatula of solid sample T was put in a dry test tube and then followed by addition of NaOH solution just to cover the solid, then warmed gently and gas evolved was tested	Colourless gas evolves which turns moist litmus paper from red to blue.	NH ₄ ⁺ confirmed

Total 13.5marks

Conclusion

- i. Cation present in sample T is NH₄⁺ 02marks
- ii. Anion present in sample T is CO₃ ²⁻ 02marks
- iii. The chemical formula for compound T is (NH₄)₂CO₃ 02marks
- iv. Write the IUPAC name of compound T Ammonium carbonate 1.5marks